

Shenzhen Anbotek Compliance Laboratory Limited Page 1 of 64 Report No.: SZAWW181009009-01E

RED-EMC Test Report

For

JEICO

Industrial wireless remote controller Model No.: JREMO 14K, JREMO 14KA, JREMO 14KB, JREMO 14KC, JREMO 14KD, JREMO 14KM

Prepared For	P.P	JEICO Anbounder Anbouer Anbouer Anbouer Anbouer	
Address	:	94-1, Choryang-ro, Dong-gu, Busan, Korea (48805)	
Prepared By	1er	Shenzhen Anbotek Compliance Laboratory Limited	
Address	nD ot	1/F, Building D, Sogood Science and Technology Park, Sanwei	
		community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102	
		Tel· (86) 755-26066440 Eax: (86) 755-26014772	

Report Number	P.C	SZAWW181009009-01E
Date of Receipt	:	Oct. 09, 2018
Date of Test	÷	Oct. 09~26, 2018
Date of Report	ter	Oct. 26, 2018

Shenzhen Anbotek Compliance Laboratory Limited Page 2 of 64 Report No.: SZAWW181009009-01E

Contents

Yok	a show him as noter					
1.0	General Information 1.1. Client Information	botok.	Althory	ANY woter		5
	1.1. Client Information	A not	en Anbote		K abolek	5
	1.2. Description of Device (EUT)1.3. Auxiliary Equipment Used During Test	96	da Yet	Stay Vupo.		
	1.3. Auxiliary Equipment Used During Tes	st		hoten Ant		6
	1.4. Description of Test Modes 1.5. Test Equipment List	hotek	Annater	19 ¹	abotak An	6
	1.5. Test Equipment List	.p.n.	nbough	- Autoos	N	
	1.6. Description of Test Facility	Restored and	- oter	Anneter		9
del	1.7. Performance Criteria Summary of Test Results	Anuste	No.	Masodo,	Pripor.	9
2.	Summary of Test Results	uek nibote		N NOTE	k	12
3.1	Emission Test	- p	otek Anos	Ve. bus	1000 Hat	13
3.1	. Conducted Emission Test at Main Ports		Maje	horey Pup	<u></u>	13
	3.1.1. Test Standard and Limit	nbotok	A		inpote. p.n	13
	3.1.2. Test Setup 3.1.3. Test Procedure		Anaote	All		13
	3.1.3. Test Procedure		- nbotek		- Postore	14
	3.1.4. Test Data		k notek	Alloofe.	494	14
3.2	2. Radiated Emission Test	ok	AUD.	en alogie	k	19
	3.2.1. Test Standard and Limit	101	otek pobo	- Port	Anaptic Anaptic	19
	3.2.2. Test Setup 3.2.3. Test Procedure	00" pr	work A	bote. Anu	101	20
	3.2.3. Test Procedure	Anbote	-tok	- mostek	19 ^{0*}	20
	3.2.4. Test Data	anbotek	- polor	Par	Allpoten	21
3.3	3.2.4. Test Data 3. Harmonic Current Emissions 3.3.1. Test Standard and Limit		Annote	Nun		27
	3.3.1. Test Standard and Limit		, mbotek			27
	3.3.2. Test Setup 3.3.3. Test Procedure	en bupor		ok	Ann	27
	3.3.3. Test Procedure		ster Anu		tek palaor	27
	3.3.4. Test Data		nuotek	60° P.	worak	27
3.4	• Voltage Fluctuations and Flicker	N.V.	NON			
	3.4.1. Test Standard and Limit	hapoto	Ann			28
	3.4.2. Test Setup					
	3.4.3. Test Procedure		Anbore		A DUOLON	28
	3.4.4. Test Data	A0.4	loggy	en pupor		28
4.	Immunity Test	⁻⁰⁴ 7.4		other parts	<u>ke</u>	30
4.1	. Electrostatic Discharge Test		pore An		poten Anb	31
	4.1.1. Test Standard and Specification		Antopten	Anbo Pa		31
	4.1.2. Test Setup	Anbe	Matek	Anbole	An	31
	4.1.3. Test Procedure	pupor	Allen	Mooton	Anbo	32
	4.1.4. Test Data	K	Anbo	totel	nobore.	33
4.2	 3.4.3. Test Procedure	100	tek pupoti	An	ok	34
	4.2.1. Test Standard and Specification	ore bur	in Name	oten Anbo		
	4.2.2. Test Setup	spoten An	p- P-		pole Anu	34
	4.2.3. Test Procedure		Anbolt	, in the second second	A Mater	
	4.2.4. Test Data	All	Amboten	Anbu	Notest.	35
43	B. Fast Transients, Common Mode Test	And	otek	Aupor	prive	36

potek

Shenzhen Anbotek Compliance Laboratory Limited Page 3 of 64 Report No.: SZAWW181009009-01E

Anbor An tek poten Anbo			boten
4.3.1. Test Standard and Specification	······	shotek Antoole	
4.3.2. Test Setup	1997	And the state	3
4.3.3. Test Procedure		have been	3
4.3.4. Test Data	Joon Privately	And Andrew	
 4.3.1. Test Standard and Specification 4.3.2. Test Setup 4.3.3. Test Procedure 4.3.4. Test Data 4.4. Surges Test 	Minoten Milos		
4.4.1. Test Standard and Specification	totok palov	Ann Mark	
4.4.2. Test Setup		soten Anbo	3
4.4.3. Test Procedure	Aupo		
4.4.4. Test Data	ek photo	An	
 4.4. Surges Test	tek abotek	Anbo	
4.5.1. Test Standard and Specification	por principlek	Anu Anu	
4.5.2. Test Setup	Anbore Ans	K spotek P	
4.5.3. Test Procedure	spoten Anbu	N	
4.5.4. Test Data	h. notek Mat	jote Anu Lak	
4.6. Voltage Dips and Interruptions	Ann	aboten Anbo	
4.6.1. Test Standard and Specification	en Anbo	- anbote	
4.6.2. Test Setup	notek Anbole	Anto tek abo	her Anbor
4.6.3. Test Procedure.	tek obotek	Anbo	notek prá
4 6 4 Test Data	Anbo Note	K Anbolo A	4
APPENDIX I TEST SETUP PHOTOGRAPH	Anboro An	tek abotek	Anbo
APPENDIX II EXTERNAL PHOTOGRAPH	nboten Anb	k wotek	Anbote 5
APPENDIX III INTERNAL PHOTOGRAPH	at notek a	nbola Am	stooten 5
ALL ENDIA III INTERNAL I HOTOURAF II	a	wolen Anborg	

Shenzhen Anbotek Compliance Laboratory Limited Page 4 of 64 Report No.: SZAWW181009009-01E

	TEST REPORT
Applicant	JEICO
Manufacturer	: JEICO
Product Name	: Industrial wireless remote controller
Model No.	JREMO 14K, JREMO 14KA, JREMO 14KB, JREMO 14KC, JREMO 14KD, JREMO 14KM
Trade Mark	And JEICO Dotek Andotek Andotek Andotek Andotek Andotek
Rating(s)	TX Power: 6V=== 16mA
	RX Power: 110-230V 50/60Hz
Test Standard() • Draft ETSI EN 301 489-1 V2.2.0 (2017-03)
	EN 55032: 2015
	EN 55035: 2017
	Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 301 489-1, EN 301 489-3 & EN 55032 and EN 55035 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Shenzhen Anbotek Compliance Laboratory Limited Page 5 of 64 Report No.: SZAWW181009009-01E

1. General Information

1.1. Client Information

Applicant	:	JEICO Anbolek Anbolek Anbolek Anbolek Anbolek Anbolek
Address	:	94-1, Choryang-ro, Dong-gu, Busan, Korea (48805)
Manufacturer	:	JEICO
Address	:	94-1, Choryang-ro, Dong-gu, Busan, Korea (48805)
Factory	:	JEICO Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Address	:	94-1, Choryang-ro, Dong-gu, Busan, Korea (48805)

1.2. Description of Device (EUT)

Product Name	:	Industrial wireless remote c	controller
Model No.	:	JREMO 14KM	A, JREMO 14KB, JREMO 14KC, JREMO 14KD, same except the name, so we prepare "JREMO 14K" for
Trade Mark	:	JEICO	k Anbotek Anbotek Anbotek Anbot
Test Power Supply	:	TX Power: DC 6V RX Power: AC 110V, 50H	z / AC 230V, 50Hz
Test Sample No.	:	S1(Normal Sample), S2(En	gineering Sample)
		Operation Frequency:	433.050~434.775MHz
		Number of Channel:	70 Channels
		Software Version:	V13 Anborek Anborek Anborek Anborek An
Product		Hardware Version:	V4.3 And Andrew Andrew Andrew
Description	:	Product Serial Number:	1810001
		Modulation Type:	GFSK
		Antenna Type:	TX: Monopole (Film type) Antenna RX: Monopole Antenna
		Antenna Gain(Peak):	TX & RX: 1.5 dBi

User's Manual.

Shenzhen Anbotek Compliance Laboratory Limited Page 6 of 64 Report No.: SZAWW181009009-01E

1.3. Auxiliary Equipment Used During Test

100	N.	~0 ¹⁰	DULT	184	-00	Pri	A.C.L	ADD-
N/A			s Anbotek	Anbor	Annabotek	Anboten	Anboutek	Anbote
14	hore	Ann	te ^W	apor	p.	L Lover	PUD	1.

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

ale and	A NOT AN ACT APT
Pretest Mode	Description
Mode 1	On Mode
te Ann stek nbotel	Anbor An otek anboten Anbor ek opc
	For Conducted Emission
Final Test Mode	Description
Mode 1	On Mode
Anboit Am	Anbotek Anbo Ak notek Anbote Ano
	For Radiated Emission
Final Test Mode	Description
Mode 1	On Mode

Shenzhen Anbotek Compliance Laboratory Limited Page 7 of 64 Report No.: SZAWW181009009-01E

1.5. Test Equipment List

Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
otek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Software Name EZ-EMC	Ferrari Tcchnology	ANB-03A	N/A	N/A M	N/A

Radiated Emission Measurement

	D.V.	194	r		104	Ya
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
P.bo	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
2. ^{An}	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
4.×	Software Name EZ-EMC	Ferrari Tcchnology	ANB-03A	N/A	N/A	N/A
P5.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 17, 2017	1 Year
6.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year

Harmonic and Flicker Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Programmable AC Power source	IVYTECH	APS-5005A	632734	June 15, 2018	1 Year
2.	Harmonic and Flicker Analyzer	EMC-PARTNER	HRRMOINCS -1000-1P	164	Dec. 16, 2017	1 Year
3.	Harmonics-1000	N/A	Ed.3.0+4.0	N.A	N/A	N/A

Electrostatic Discharge Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. An	ESD Simulators	3Ctest	ESD-30T	ES0131505	Nov. 17, 2017	1 Year

Electrical Fast Transient/Burst Immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.1	EFT Burst Simulator	PRIMA	EFT61004B	PR10114282	Nov. 17, 2017	1 Year
1.2	EFT-Clamp	PRIMA	EFT-Clamp	otek / Anbos	Nov. 17, 2017	1 Year
2.1	EFT Burst Simulator	TESEQ	NSG 3060	1480	Nov. 17, 2017	1 Year
2.2	CDN	TESEQ	CDN 3061	1408	Nov. 17, 2017	1 Year

Shenzhen Anbotek Compliance Laboratory Limited Page 8 of 64 Report No.: SZAWW181009009-01E

vo m		All All All	P	wo ^{te} .	an ^p	Ver
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
1	Signal Generator	Agilent	N5182A	MY48180656	Nov. 17, 2017	1 Year
2 otek	Amplifier	Amplifier Research	150W1000M3	309410	N/A And	N/A
3 _{nbo}	Amplifier	Amplifier Research	60S1G3	309433	N/A	N/A
4	Log-Periodic Antenna	Schwarzbeck	VULP9118E	00992	Aug. 17, 2018	3 Year
5	Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 18, 2017	3 Year
6	Power Sensor	Agilent	E9301A	MY41498906	N/A	N/A
7	Power Sensor	Agilent	E9301A	MY41498088	N/A	N/A
8	Power Meter	Agilent	E4419B	GB40202909	N/A	N/A
9	Field Probe	ETS-Lindgren	HI-6006	00212747	Apr. 20, 2017	3 Year
10	software	EMtrace	EM 3	N/A	N/A	N/A

R/S Immunity Measurement

Surge Measurement

Item	Fauinment	Manufacturer	Model No.	Carial No	Lost Cal	Col Intomiol
nem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.1	6kV Surge Generator	TESEQ	NSG 3060	1480	Nov. 17, 2017	1 Year
1.2	CDN	TESEQ	CDN 3061	1408	Nov. 17, 2017	1 Year
2.1	6kV Surge Generator	EMPEK	LSG-5060G	06010017N	Nov. 17, 2017	1 Year
2.2	CDN	EMPEK	CDN-5110G	061100005N	Nov. 17, 2017	1 Year

Injected Currents Susceptibility Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Anbo 1.Anbo	C/S Conducted Immunity Test System	FRANKONIA	CIT-10	126A1196/2012	Nov. 17, 2017	1 Year
2.	CDN NO	FRANKONIA	CDN - M2+ M3	A2210178/2012	Nov. 17, 2017	1 Year
3.	6dB Attenuator	FRANKONIA	DAM 26W	1172202	Nov. 17, 2017	1 Year
4.	CIT-10	FRANKONIA	Version1.1.7	N/A	N.A	N/A

Voltage Dips and Interruptions Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	CYCLE SAG Simulator	PRIMA	DRP61011AG	PR12046234	Nov. 17, 2017	1 Year

Shenzhen Anbotek Compliance Laboratory Limited Page 9 of 64 Report No.: SZAWW181009009-01E

1.6. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

1.7. Performance Criteria

1.7.1. For EMS Test:

A: Normal performance within the specification limits;

- B: Temporary degradation or loss of function or performance which is self-recoverable;
- $\sqrt{-}$ C: Temporary degradation or loss of function or performance which requires operator intervention or system reset;

 $\sqrt{}$ D: Degradation or loss of function which is not recoverable due to damage of equipment (components) or software, or loss of data

Note: The manufacturer's specification may define effects on the EUT which may be considered insignificant, and therefore acceptable.

This classification may be used as a guide in formulating performance criteria, by committees responsible for generic, product and product-family standards, or as a framework for the agreement on performance criteria between the manufacturer and the purchaser, for example where no suitable generic, product or product-family standard exists.

1.7.2. For EN 301 489-3:

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.
- The equipment shall meet the minimum performance criteria as specified in the following clauses.

Table 1: Performance criteria

Criteri		After test				
Α	Shall operate as intended.	Shall operate as intended.				
	(see note 1).	Shall be no degradation of performance (see note 3).				
	Shall be no loss of function.	Shall be no loss of function.				
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable				
		functions.				
В	May show loss of function (one or more).	Functions shall be self-recoverable.				
	May show degradation of performance	Shall operate as intended after recovering.				
	(see note 2). Shall be no unintentional transmissions.	Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable				
		functions.				
С	May be loss of function (one or more).	Functions shall be recoverable by the operator.				
0	may be loss of function (one of more).	Shall operate as intended after recovering.				
		Shall be no degradation of performance (see note 3).				
NOTE 1:	Operate as intended during the test allows a level	vel of degradation not below a minimum performance				
		of the apparatus as intended. In some cases the				
		eplaced by a permissible degradation of performance.				
		sible performance degradation is not specified by the				
	nanufacturer then either of these may be derived from the product description and documentation					
	including leaflets and advertising) and what the user may reasonably expect from the apparatus if					
	used as intended.					
NOTE 2:		inderstood as a degradation to a level not below a				
		anufacturer for the use of the apparatus as intended. In				
	ome cases the specified minimum performance level may be replaced by a permissible degradation					
	of performance.	wikle performance degradation is not aposited by the				
		sible performance degradation is not specified by the				
	manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if					
	used as intended.	e user may reasonably expect from the apparatus it				
NOTE 3:		understood as no degradation below a minimum				
10120.	No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some					
	cases the specified minimum performance level may be replaced by a permissible degradation of					
		operating data or user retrievable data is allowed.				
		sible performance degradation is not specified by the				
		ed from the product description and documentation				
		e user may reasonably expect from the apparatus if				
	used as intended.					

Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the

Shenzhen Anbotek Compliance Laboratory Limited Page 11 of 64 Report No.: SZAWW181009009-01E

transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Receivers (TR)

Anbote

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

A communication link shall be established at the start of the test, and maintained during the test, see clauses 4.2.3 and 4.2.4.

During the test, the uplink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check).

NOTE: When there is a high level background noise present the filter bandwidth can be reduced down to a minimum of 40 Hz.

At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate. **Performance criteria for Transient phenomena applied to Transmitters (TT)**

A communications link shall be established at the start of the test, see appropriate clauses 4.2 to 4.2.4. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate.

Performance criteria for Continuous phenomena applied to Receivers (CR)

A communications link shall be established at the start of the test, see appropriate clauses 4.2 to 4.2.6. During the test, the RXQUAL of the downlink shall not exceed the value of three, measured during each individual exposure in the test sequence.

During the test, the downlink speech output level shall be at least 35 dB less than the previously recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz (audio breakthrough check).

NOTE: When there is a high level background noise present the filter bandwidth can be reduced down to a minimum of 40 Hz. At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained.

Performance criteria for Transient phenomena applied to Receivers (TR)

A communications link shall be established at the start of the test, see appropriate clauses 4.2. to 4.2.6. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained.

2. Summary of Test Results

est Items	Standard	Basic Standard	Limit	Results
Conducted Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.3 & 8.4	EN 55032: 2015	Class B	PASS
adiated Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.2	EN 55032: 2015	Class B	PASS
Iarmonic Current Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.5	EN 61000-3-2: 2014	Class A	N/A
Voltage Fluctuations& Tlicker	ETSI EN 301 489-1 V2.2.0 Clause 8.6	EN 61000-3-3: 2013	ek potek	PASS
	EMC Im	munity pole have		
est Items	Standard	Basic Standard	Performance Criteria	Results
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.0 Clause 9.3	EN 61000-4-2 :2009	Anbotek B botek	PASS
RF Electromagnetic	ETSI EN 301 489-1 V2.2.0 Clause 9.2	EN 61000-4-3: 2006 +A1: 2008+A2: 2010	ek A _{Anb} otek	PASS
ast transients,	ETSI EN 301 489-1 V2.2.0 Clause 9.4	EN 61000-4-4: 2012	botek B Anbot	PASS
burges Model M	ETSI EN 301 489-1 V2.2.0 Clause 9.8	EN 61000-4-5: 2014+A1: 2017	Anb Bek	PASS
Radio frequency, ommon mode	ETSI EN 301 489-1 V2.2.0 Clause 9.5	EN 61000-4-6: 2014	A	PASS
Volt. Interruptions Volt. Dips	ETSI EN 301 489-1 V2.2.0 Clause 9.7	EN 61000-4-11: 2004	B / C / C NOTE (3)	PASS
OTE:	potek Anboten Anbo	tek subotek	Anbote, Ant	Lotek.
p.v.	test is not applicable in this Te	and how	Anbote P	unb otek
oto Nno	for equipment intended to be tioncentre, the class A limits m	A	industrial envir	conment or
	0% reduction – Performance C	100 P.	Anbe	4 60
Voltage din: 10	00% reduction – Performance C	riteria B		

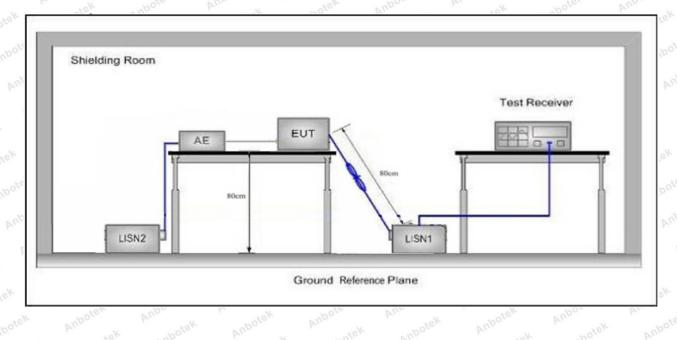
3. Emission Test

3.1. Conducted Emission Test at Main Ports

T im

3.1.1. Test Standard and Limit

Test Standard	Draft ETSI EN 301	489-1 V2.2.0 C	Clause 8.3 & 8	3.4	Anbotek	Anboth
Basic Standard	EN 55032: 2015	Anbotek	Anboro	Ann botek	Anbotek	Anbo


	F	Maximum RF Line Voltage (dBuV)				
Test Limit	Frequency	Quasi-peak Level	Average Level			
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
	500kHz~5MHz	56	46			
	5MHz~30MHz	60	50			

Remark: *Decreasing linearly with logarithm of the frequency.

Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

	Encourance	Maximum RF Line Voltage (dBuV)				
T	Frequency	Quasi-peak Level	Average Level			
Test Limit	150kHz~500kHz	79 Total	Antoole 66			
	500kHz~30MHz	73 Autoret	And the 60 And the K			

3.1.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited Page 14 of 64 Report No.: SZAWW181009009-01E

3.1.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ETSI EN 301 489-1 V2.2.0 & EN 55032: 2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

For the actual test configuration, please refer to the related Item EUT Test Photos.

3.1.4. Test Data

PASS

The EUT should be compliance to the limit of Class B Only the worst case data was showed in the report, please to see the following pages

Shenzhen Anbotek Compliance Laboratory Limited Page 15 of 64 Report No.: SZAWW181009009-01E

Conducted Emission Test Data

1.9580

4.8700

11 12 -2.72

-3.02

20.14

20.20

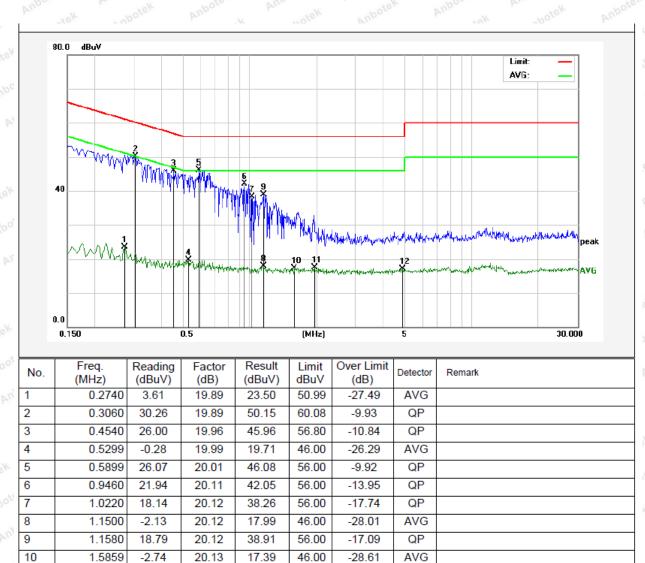
17.42

17.18

46.00

46.00

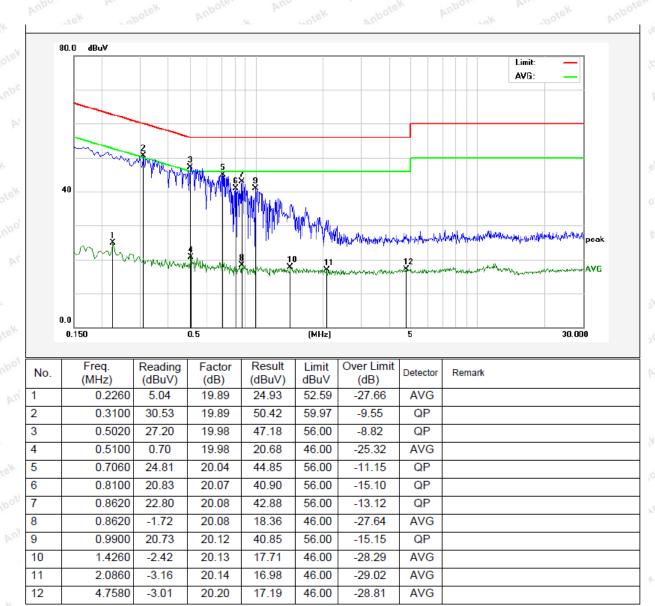
-28.58


-28.82

AVG

AVG

Test Site:	1# Shielded Room
Operating Condition:	Mode 1
Trat Constitutions	TX: DC 6V
Test Specification:	RX: AC 110V, 50Hz
Comment:	Live Line
	T 22 1°C H 490/


Tem.: 22.1℃ Hum.: 48%

Shenzhen Anbotek Compliance Laboratory Limited Page 16 of 64 Report No.: SZAWW181009009-01E

Conducted Emission Test Data

Test Site:	1# Shielded Room
Operating Condition:	Mode 1
Trat Constitutions	TX: DC 6V
Test Specification:	RX: AC 110V, 50Hz
Comment:	Neutral Line
	Tem.: 22.1°C Hum.: 48%

Shenzhen Anbotek Compliance Laboratory Limited Page 17 of 64 Report No.: SZAWW181009009-01E

Conducted Emission Test Data

1.2300

1.2860

1.5859

2.5180

9

10

11 12 -0.42

26.34

-1.40

-2.50

20.12

20.13

20.13

20.15

19.70

46.47

18.73

17.65

46.00

56.00

46.00

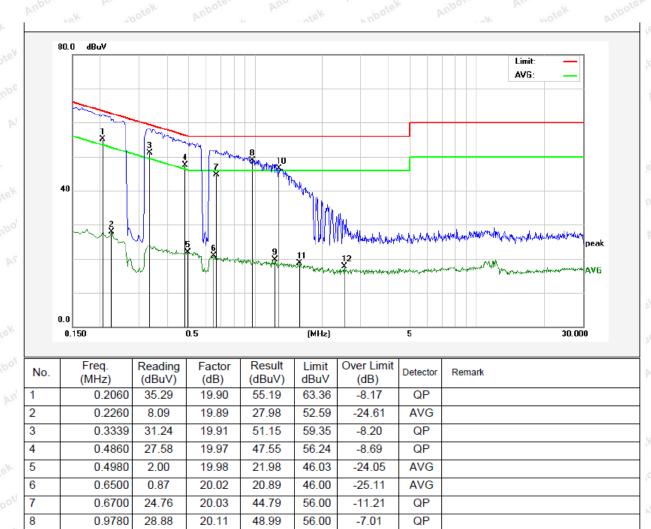
46.00

-26.30

-9.53

-27.27

-28.35


AVG

QP

AVG

AVG

Test Site:	1# Shielded Room
Operating Condition:	Mode 1
Trat Caralfinations	TX: DC 6V
Test Specification:	RX: AC 230V, 50Hz
Comment:	Live Line
	Tem.: 22.1℃ Hum.: 48%

5

6

7

8

9

10

11

12

0.5299

0.5940

0.9580

0.9620

1.3020

1.3020

1.6820

2.0180

1.59

24.58

29.70

-0.21

26.87

-0.85

-2.02

-2.68

19.99

20.01

20.11

20.11

20.13

20.13

20.13

20.14

21.58

44.59

49.81

19.90

47.00

19.28

18.11

17.46

46.00

56.00

56.00

46.00

56.00

46.00

46.00

46.00

-24.42

-11.41

-6.19

-26.10

-9.00

-26.72

-27.89

-28.54

AVG

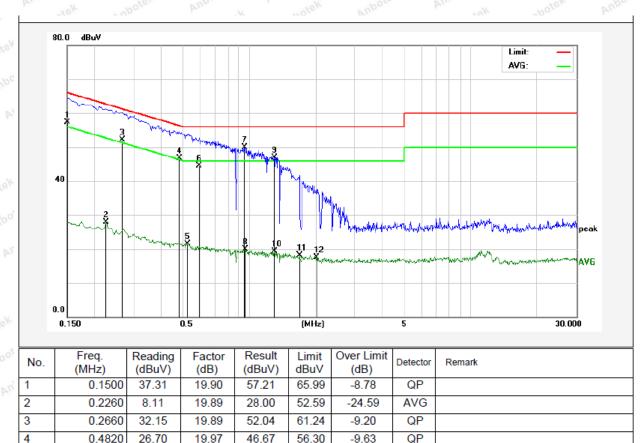
QP

QP

AVG

QP

AVG


AVG

AVG

Shenzhen Anbotek Compliance Laboratory Limited Page 18 of 64 Report No.: SZAWW181009009-01E

Conducted Emission Test Data

Test Site:	1# Shielded Room
Operating Condition:	Mode 1
Trat Constitutions	TX: DC 6V
Test Specification:	RX: AC 230V, 50Hz
Comment:	Neutral Line
	Tem · 22 1 °C Hum · 48%

Shenzhen Anbotek Compliance Laboratory Limited Page 19 of 64 Report No.: SZAWW181009009-01E

3.2. Radiated Emission Test

3.2.1. Test Standard and Limit

Test Standard	Draft ETSI EN 30	1 489-1 V2.	2.0 Clause 8.2	botek	Anbotek	Anbo	be.
Basic Standard	EN 55032: 2015	Anbotek	Anbors	An	Anboten	Anbo	

Radiated Emission Test Limit (Below 1000MHz)

E.	Limit	t (dBµV/m)		
(MHz)	Quasi	-peak Level		
	Class B	Class A		
30MHz~230MHz	40 Aupore P	All solek	50	Anbo
230MHz~1000MHz	tok hotel 47 Anboten	And tek	57	Anbor
Remark: 1. The lower limit shall apply a	at the transition frequency. 2. The test di	istance is 3m.	hote	K Anboto

Radiated Emission Test Limit (Above 1000MHz)

Limit (dBµV/m)							
Clas	s B	Class A					
Peak	Average	Peak	Average				
70	50	76	hotek 56 photos				
Anbote 74 And	54 54	80	60				
	Peak	Class BPeakAverage7050	Class BClaPeakAveragePeak705076				

Remark: 1. The lower limit applies at the transition frequency. 2. The test distance is 3m.

Radiated Emission Test Limit for FM Receivers

E.	Limit (dBµV/m)								
Frequency (MHz)	Quasi-peak Level								
(INITIZ)	Fundamental	Harmonics							
30MHz~230MHz	60	52							
230MHz~300MHz	60	tek publick 52 Andrew A							
300MHz~1000MHz	60 Minore Min	56							

Remark: 1. The lower limit shall apply at the transition frequency. 2. The test distance is 3m.

Frequency Range of Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

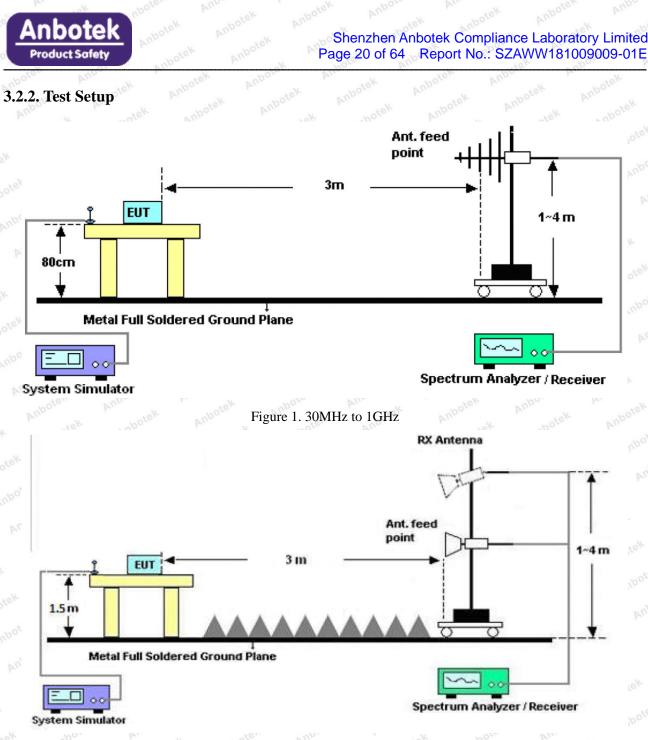


Figure 2. Above 1 GHz

3.2.3. Test Procedure

1) The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.

3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

5) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold

Shenzhen Anbotek Compliance Laboratory Limited Page 21 of 64 Report No.: SZAWW181009009-01E

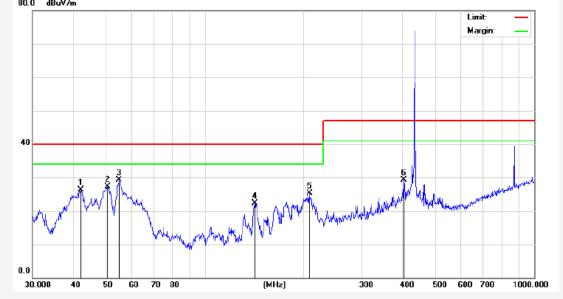
mode when the test frequency is below 1GHz.

The test receiver/spectrum was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.

6) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

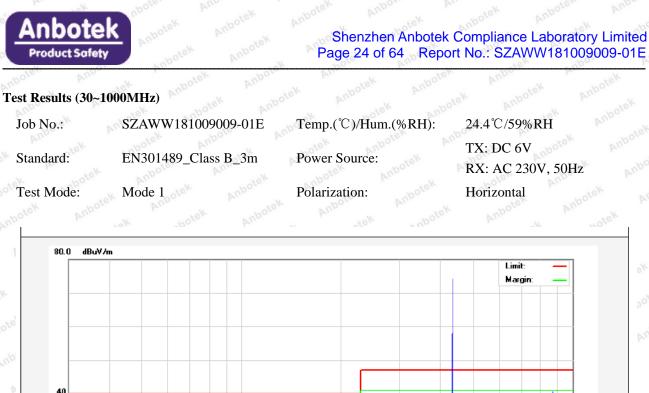

The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak/ Average detection at frequency above 1GHz.

3.2.4. Test Data

PASS

The EUT should be compliance to the limit of Class B Only the worst case data was showed in the report, please to see the following pages

Shenzhen Anbotek Compliance Laboratory Limited Page 22 of 64 Report No.: SZAWW181009009-01E **Product Safe** Test Results (30~1000MHz) SZAWW181009009-01E 24.4°C/59%RH Job No .: Temp.(℃)/Hum.(%RH): TX: DC 6V Standard: EN301489_Class B_3m Power Source: RX: AC 110V, 50Hz Test Mode: Mode 1 Polarization: Horizontal 80.0 dBuV/m



No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	42.1542	41.13	-14.78	26.35	40.00	-13.65	peak			
2	50.7637	43.95	-16.60	27.35	40.00	-12.65	peak			
3	55.0274	46.01	-16.73	29.28	40.00	-10.72	peak			
4	141.8262	43.85	-21.47	22.38	40.00	-17.62	peak			
5	207.8501	44.41	-19.05	25.36	40.00	-14.64	peak			
6	401.8385	42.08	-12.82	29.26	47.00	-17.74	peak			

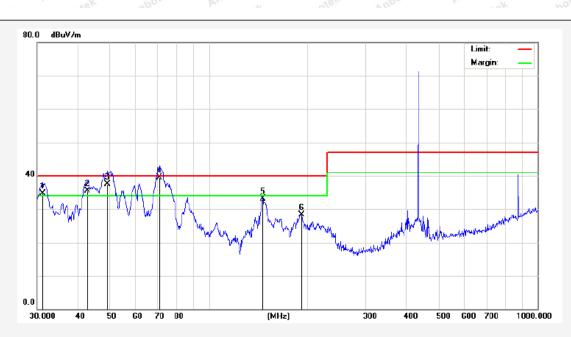
00 Shenzhen Anbotek Compliance Laboratory Limited Page 23 of 64 Report No.: SZAWW181009009-01E Product Safe Test Results (30~1000MHz) SZAWW181009009-01E Temp.(℃)/Hum.(%RH): 24.4°C/59%RH Job No .: TX: DC 6V Standard: EN301489_Class B_3m Power Source: RX: AC 110V, 50Hz Test Mode: Mode 1 **Polarization:** Vertical 80.0 dBu∀/m Limit: Margin:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	36.2541	49.94	-15.41	34.53	40.00	-5.47	QP	100	360	
2	41.8596	52.33	-13.72	38.61	40.00	-1.39	QP	100	360	
3	59.4405	51.12	-15.96	35.16	40.00	-4.84	QP	100	0	
4	75.7114	46.01	-20.47	25.54	40.00	-14.46	peak			
5	175.0368	41.11	-16.20	24.91	40.00	-15.09	peak			
6	51.0220	54.14	-15.60	38.54	40.00	-1.46	QP	100	0	

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	31.7313	48.01	-18.05	29.96	40.00	-10.04	peak			
2	47.8260	41.97	-16.04	25.93	40.00	-14.07	peak			
3	69.8450	48.26	-20.76	27.50	40.00	-12.50	peak			
4	134.0882	51.71	-21.62	30.09	40.00	-9.91	peak			
5	147.4036	47.73	-21.38	26.35	40.00	-13.65	peak			
6	203.5228	47.41	-18.95	28.46	40.00	-11.54	peak			

Anbo Shenzhen Anbotek Compliance Laboratory Limited Page 25 of 64 Report No.: SZAWW181009009-01E **Product Safe** Test Results (30~1000MHz) SZAWW181009009-01E 24.4°C/59%RH Job No .: Temp.(°C)/Hum.(%RH):

Test Mode:


Mode 1

Standard:

EN301489_Class B_3m

Power Source: **Polarization:**

TX: DC 6V RX: AC 230V, 50Hz Vertical

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	31.1798	51.88	-17.21	34.67	40.00	-5.33	QP	100	0	
2	42.6000	49.39	-13.87	35.52	40.00	-4.48	QP	100	0	
3	49.1865	52.87	-15.37	37.50	40.00	-2.50	QP	100	360	
4	70.8915	59.44	-19.95	39.49	40.00	-0.51	QP	100	0	
5	145.8611	50.55	-17.40	33.15	40.00	-6.85	peak			
6	191.7450	43.21	-14.92	28.29	40.00	-11.71	peak			

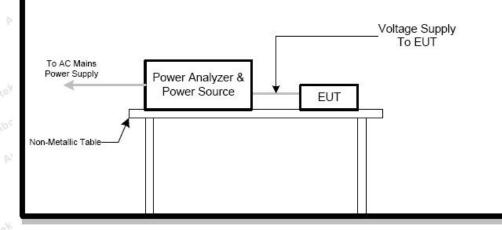
Shenzhen Anbotek Compliance Laboratory Limited Page 26 of 64 Report No.: SZAWW181009009-01E

Test Results (1GHz~6GHz)

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
1511.14	48.92	-2.44	46.47	70.00	-23.53	H.por	PEAK
2085.42	46.12	-2.43	43.68	70.00	-26.32	H Ant	PEAK
2296.67	48.01	-3.65	44.37 MOC	70.00	-25.63	H H	PEAK
3855.87	52.89	-4.64	48.25	74.00	-25.75	H	PEAK
4659.19	50.65	-5.02	45.63	74.00	-28.37	Hek	PEAK
5168.30	45.43	-5.58	39.85	74.00	-34.15	Hote	PEAK
1511.14	39.10	-2.44	36.66	50.00	-13.34	Н	AVG
2085.42	44.77	-2.43	42.33	50.00	-7.67	W H	AVG
2296.67	41.95	-3.65 M	38.30	50.00	-11.70	Н	AVG
3855.87	45.65	-4.64	41.01	54.00	-12.99	H	AVG
4659.19	37.22	-5.02	32.19	54.00	-21.81	Anbot	AVG
5168.30	39.42	-5.58	33.85	54.00	-20.15	H	AVG
1518.17	55.53	-3.20	52.33	70.00	-17.67	VAnb	PEAK
2043.61	50.85	-2.47	48.38	70.00	-21.62	^e ^K V ⊳	PEAK
2247.44	53.00	-3.97	49.03	70.00	-20.97	oo ^{te} V	PEAK
4188.15	50.53	-5.19	45.34	74.00	-28.66	V	PEAK
4526.73	54.57	-4.76	49.81	74.00	-24.19	Vote	PEAK
4991.16	50.52	-6.17	44.36	74.00	-29.64	V	PEAK
1518.17	38.41	-3.20	35.21	50.00	-14.79	V	AVG
2043.61	44.20	-2.47 M	41.73	50.00	-8.27	V	AVG
2247.44	42.03	-3.97	38.06	50.00	-11.94	V	AVG
4188.15	39.43	-5.19	34.24	54.00	-19.76	Anbou V tek	AVG
4526.73	41.36	-4.76	36.60	54.00	-17.40	V	AVG
4991.16	42.79	-6.17	36.63	54.00	-17.37	Vanbo	AVG

Remark:

1. Level =Receiver Read level + Antenna Factor


Shenzhen Anbotek Compliance Laboratory Limited Page 27 of 64 Report No.: SZAWW181009009-01E

3.3. Harmonic Current Emissions

3.3.1. Test Standard and Limit

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 8.5	,mu botek	Anbotek	Anbor At
Basic Standard	EN 61000-3-2: 2014	An	Anboten	Anbo
Test Limit	Please to refer to the clause 7 of standard EN	61000-3-2:	2014. Marbotte	Anbo stek

3.3.2. Test Setup

3.3.3. Test Procedure

1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

2) The classification of EUT is according to section 5 of EN 61000-3-2: 2014. The EUT is classified as follows: Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools; Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television.

3) The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.4) For the actual test configuration, please refer to the related item –EUT Test Photos.

3.3.4. Test Data

The active input power of the EUT is less than 75W. Therefore, according to EN 61000-3-2, no limits are necessary.

Shenzhen Anbotek Compliance Laboratory Limited Page 28 of 64 Report No.: SZAWW181009009-01E

3.4. Voltage Fluctuations and Flicker

3.4.1. Test Standard and Limit


Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 8.6	hotek	Anbotek	Anbornek
Basic Standard	EN 61000-3-3: 2013	An	Anboten	Anbo

Toot Limit

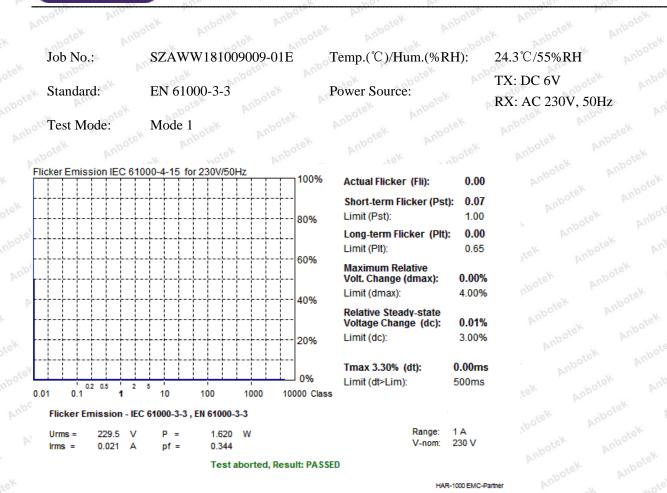
voltage Fluctua	
Test Items	Limits
And Pst otek Andore	hotek Anbolek 1.0 botek hotek
poter Anbrightek Plt Anbotek Anbote tek	And Andrew 0.65 Miles Andrew
Anbote Ane potek dc Anbotek Anbot	3.3%
Anbole And Anbole Anbo	4.0%
Anborn An dtek Anboren Anb	Not exceed 3.3% for 500ms
an abor pri v voter p	not both All

Voltage Eluctuation and Elicker

3.4.2. Test Setup

3.4.3. Test Procedure

1) Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.


2) All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

3) For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.4.4. Test Data

Please to see the following pages

Shenzhen Anbotek Compliance Laboratory Limited Page 29 of 64 Report No.: SZAWW181009009-01E

Full Bar: Actual ValuesEmpty Bar: Maximum ValuesCircles: Average ValuesBlue: Current , Green : Voltage , Red : Failed

nbote

Product Safety

Urms =	229.5V	Freq	=	50.013	Rai	ige:	1 A
Irms =	0.021A	Ipk	-	0.120A	cf	Put	5.833
P =	1.620W	Sinbo	=	4.707VA	pf	=	0.344

Test - Time : 1 x 10min = 10min (100 %)

LIN (Line Impedance Network) : L: 0.24ohm +j0.15ohm N: 0.16ohm +j0.10ohm

Limits	abo	Plt :	0.65	Pst	AUP	1.00
		dmax :	4.00 %	dc	• P	3.00 %
		dtLim:	3.30 %	dt>L	.im:	500ms

Test aborted, Result: PASSED

1

dmax	dc	dt>Lim
[%]	[%]	[ms]
0.000	0.010	⁶ 0.000
	[%]	[%] [%]

Shenzhen Anbotek Compliance Laboratory Limited Page 30 of 64 Report No.: SZAWW181009009-01E

4. Immunity Test

Anbotek

Product Safety

General Performance Criteria

• Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR) During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

• Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

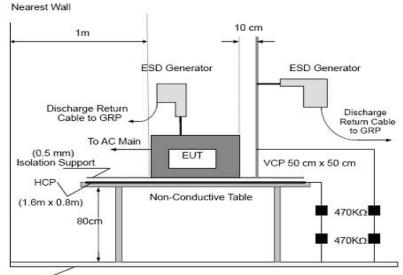
• Performance criteria for equipment which does not provide a continuous communication link For radio equipment which does not provide a continuous communication link, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

• Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.


Shenzhen Anbotek Compliance Laboratory Limited Page 31 of 64 Report No.: SZAWW181009009-01E

4.1. Electrostatic Discharge Test

4.1.1. Test Standard and Specification

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.3/ EN 55035 Clause 4.2.1
Basic Standard	EN 61000-4-2: 2009
Discharge Impedance:	330 ohm / 150 pF
Performance Criterion:	CT/CR
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV Contact Discharge: 2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point Contact Discharge: min. 200 times in total
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

4.1.2. Test Setup

Note:

TABLE-TOP EQUIPMENT:

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

Shenzhen Anbotek Compliance Laboratory Limited Page 32 of 64 Report No.: SZAWW181009009-01E

Anbotek Product Safety

FLOOR-STANDING EQUIPMENT:

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.1.3. Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

- 1) Contact discharge was applied to conductive surfaces and coupling planes of the EUT.
- During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.
- Vertical Coupling Plane (VCP):
- The coupling plane, of dimensions $0.5m \ge 0.5m$, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.
- The four faces of the EUT will be performed with electrostatic discharge.
- Horizontal Coupling Plane (HCP):
- The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.
- The four faces of the EUT will be performed with electrostatic discharge.
- 2) Air discharges at insulation surfaces of the EUT.
 - It was at least ten single discharges with positive and negative at the same selected point.
- 3) When applying direct discharges to a portable or handheld battery-powered EUT with a display screen, it may not be possible to observe the screen for a given EUT orientation. If observation of the screen is necessary during this test, the EUT may be mounted vertically using non-metallic supports.
- 4) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Shenzhen Anbotek Compliance Laboratory Limited Page 33 of 64 Report No.: SZAWW181009009-01E

4.1.4. Test Data

Anbote

Product Safety

Job No.:	SZAWW181009009-01E	Temp.(°C)/Hum.(%RH):	24.3°C/55%RH	
Standard:	EN 61000-4-2	Power Source:	TX: DC 6V	
Standard.		nower source.	RX: AC 230V, 50Hz	

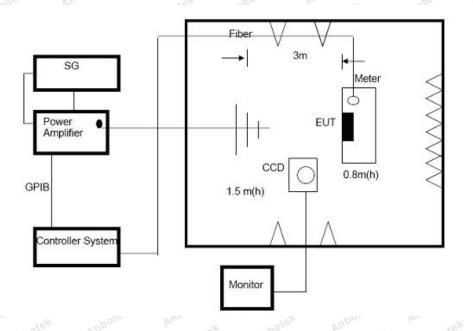
Test Mode:

Mode 1

Item	NA NOT DIV	conducted surfaces and ing planes	Air Discharge at insulating
Anotek	Direct Contact Discharge	Indirect Contact Discharge	surfaces
Test Voltage	Reaction of EUT / Result	Reaction of EUT / Result	Reaction of EUT / Result
+2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
-2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
+4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
-4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
+6kV	Anbotek - Anbots	And hotek - Anbotek A	n.r.r. PASS
-6kV	ek Anbotek Anbote ek	Am botek - Anbotek	n.r.r. PASS
+8kV	otek Anbotek Anbot	ek abotek Anboten	n.r.r. PASS
-8kV	botek Anbotek Anbo	etek nbotok Anboter	n.r.r. PASS

Remarks: n.r.r. = no reaction recognized

Performace Criteria A observed and No any function degraded during the tests.


Shenzhen Anbotek Compliance Laboratory Limited Page 34 of 64 Report No.: SZAWW181009009-01E

4.2. Radiated, RF Electromagnetic Fields Test

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.2/ EN 55035 Clause 5
Basic Standard	EN 61000-4-3: 2006+A1: 2008+A2: 2010
Required Performance	And otek Anbotek Anbotek Anbotek Anbotek Anbotek
Frequency Range	80MHz to 6GHz
Field Strength	3 V/m
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of preceding frequency value
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m nbotek Anbotek Anbotek Anbo
Antenna Height	1.5 m ^{hubb} tek potek Anbotek Anbotek Anbotek Anbotek A
Dwell Time	at least 0.5 seconds

4.2.1. Test Standard and Specification

4.2.2. Test Setup

4.2.3. Test Procedure

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters. 1) The field strength level was 3V/m

2) The frequency range is swept from 80 MHz to 6000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave.

3) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond, but shall in no case be less than 0.5s.

4) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

4.2.4. Test Data

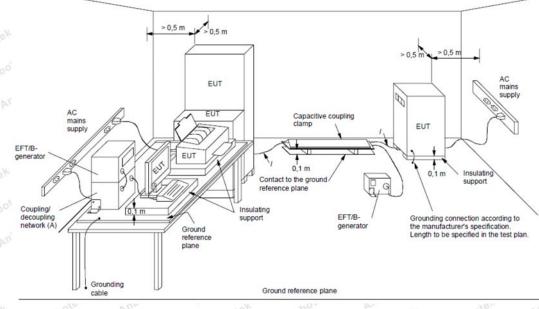
 Job No.:
 SZAWW181009009-01E
 Temp.(°C)/Hum.(%RH):
 21.1°C/54.7%RH

 Standard:
 EN 61000-4-3
 Power Source:
 TX: DC 6V

 RX: AC 230V, 50Hz
 RX: AC 230V, 50Hz

Test Mode: Mode 1

0	Frequency Range (MHz)	Antenna Polarity	R.F. Field Strength	Azimuth	Result
P	Anbotek Anbotek	ek Anbotek	Anbotek Anbotek	Front	otek Anbotek
3V	80~6000	H / V	3 V/m (rms) AM Modulated	Rear	
0		Anbote, Ano	1000Hz, 80%	Left	
X	botek Anbou	Anbotek A	nboten Anbo	Right Moole	An. Anbotek


4.3. Fast Transients, Common Mode Test

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.4/ EN 55035 Clause 4.2.4
Basic Standard	EN 61000-4-4: 2012
Required Performance	BAnno botek Anbotek Anbotek Anbotek Anbotek Anbotek
Test Voltage:	Power Line: 1 kV Signal/Control Line: 0.5 KV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape :	Tr/Th 5/50 ns
Burst Duration:	15 ms for 5KHz Repetition Frequency 0.75 ms for 100KHz Repetition Frequency
Burst Period:	300 ms
Test Duration	1 min Anbotek Anbotek Anbotek Anbotek Anbotek

4.3.1. Test Standard and Specification

4.3.2. Test Setup

Product Sa

- Note: (A) location for supply line coupling
 - (B) location for signal lines coupling

For the actual test configuration, please refer to the related item - Photographs of the Test Setup

4.3.3. Test Procedure

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:

1) The distance between any coupling devices and the EUT should be (0.5-0/+0.1)m for table-top equipment

Anbotek Product Safety

Shenzhen Anbotek Compliance Laboratory Limited Page 37 of 64 Report No.: SZAWW181009009-01E

testing, and (1.0 ± 0.1) m for floor standing equipment.

- 2) Both positive and negative polarity discharges were applied.
- 3) The duration time of each test sequential was 1 minute
- 4) For the actual test configuration, please refer to the related Item -EUT Test Photos.

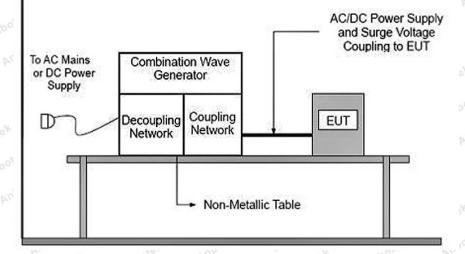
4.3.4. Test Data

Job No.:	SZAWW181009009-01E	Temp.(°C)/Hum.(%RH):	24.3°C/55%RH	
Standard:	EN 61000-4-4	Power Source:	TX: DC 6V RX: AC 230V, 50Hz	
Test Mode:	Mode 1		Anboise 250 (, Sourie	

P	P				Te	st lev	el (kV)					
	Coupling 1	Line	0	.5	1	l	2	,	4	Ļ	Observation	Criterion	Results
~			+	-	+	-	+	-	+	-			
	ek Ans	b.Fek	Ppg	P	Р	P	tek	P. P.	hotek		Anboten Anbo	potek Anb	PASS
0.	AC Line	Notek	Р	P	P	Р	nbotek		Anbo	ler vol	TT,TR	Anbole B	PASS
P	Anbotek	L+N ^o	P	P	Pie	P	Anbo	lek .	P.C	pore	ek anbotek	Anbotek	PASS

Note: 1)There was not any unintentional transmission in standby mode

2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.


Shenzhen Anbotek Compliance Laboratory Limited Page 38 of 64 Report No.: SZAWW181009009-01E

4.4. Surges Test

4.4.1. Test Standard and Specification

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.8/EN 55035 Clause 4.2.5
Basic Standard	EN 61000-4-5: 2014
Required Performance	B ^{ndek} Anbotek Anbotek Anbotek Anbotek Anbotek
Wave-Shape:	Combination Wave 1.2/50 us Open Circuit Voltage 8 /20 us Short Circuit Current
Test Voltage:	Line to Line: 1 kV; Line to ground: 2kV
Generator Source:	2 ohm between networks
Impedance:	12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0°/90°/180°/270°
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

4.4.2. Test Setup

4.4.3. Test Procedure

1) For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

For double-insulated products without PE or external earth connections, the test shall be done in a similar way as

Shenzhen Anbotek Compliance Laboratory Limited Page 39 of 64 Report No.: SZAWW181009009-01E

for grounded products but without adding any additional external grounded connections. If there are no other possible connections to earth, line-to-ground tests may be omitted.

2) For Unshielded unsymmetrical interconnection lines:

The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

3) Unshielded symmetrical interconnections communication lines:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

4) For Shielded lines:

Anbote

Product Safet

Direct application,

The EUT is isolated from ground and the surge is applied to its metallic enclosure; the termination (or auxiliary equipment) at the port(s) under test is grounded. This test applies to equipment with single or multiple shielded cables.

Rules for application of the surge to shielded lines:

i) Shields grounded at both ends

> The surge injection on the shield.

ii) Shields grounded at one end

> If in the installation the shield is connected only at the auxiliary equipment, test shall be done in that configuration but with the generator still connected to the EUT side. If cable lengths allow, the cables shall be on insulated supports 0.1 m above the ground plane or cable tray.

For products which do not have metallic enclosures, the surge is applied directly to the shielded cable.

- Alternative coupling method for testing single cables in a multi-shield configuration, Surges are applied in close proximity to the interconnection cable under test by a wire. The length of the cable between the port(s) under test and the device attached to the other end of the cable shall be the lesser of the maximum length permitted by the EUT's specification, or 20 m. Where the length exceeds 1 m, excess lengths of cables shall be bundled at the approximate centre of the cables with the bundles 30 cm to 40 cm in length.

Anbotek Product Safety

Shenzhen Anbotek Compliance Laboratory Limited Page 40 of 64 Report No.: SZAWW181009009-01E

4.4.4. Test Data

Job No.:	SZAWW181009009-01E	Temp.(℃)/Hum.(%RH):	24.3℃/55%RH
Standard:	EN 61000-4-5	Power Source:	TX: DC 6V
			RX: AC 230V, 50Hz

Test Mode: Mode 1

- Ti		100	1.7	2.5			1.162				I V	0	DIT.
re)				Test level									
Cou	pling Li	ne	0.5 k	V	1 kV		2 kV	-	4 kV		Observation	Criterion	Result
			+	-	+	-	+	-	+	-			
nbote	6	0°	An	~ otel	Р	Phote	6	Aupore	No.V	Pun	potek Anbr	tek An	pot pr
AC	L-N	90°	X	And	Р	Panb	otek	Anb	ou	Pr.	TT,TR	B	PASS
line	nbotek	180°	te.	Aur	Ptek	Р	npotek	3	upor.	.e¥.	Al II,IIK	Anbolen	Allo
Lek P	npote	270°	ipoto .	P	Р	Р	Anbot	e¥-	Aupo	- Kek	Autobotek	Anboten	Anb


Note:1)There was not any unintentional transmission in standby mode2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

4.5. Radio Frequency, Common Mode Test

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.5/EN 55035:2017 Clause 5
Basic Standard	EN 61000-4-6: 2014
Required Performance	A botek Anbotek Anbotek Anbotek Anbotek Anbotek
Frequency Range:	0.15 MHz~80 MHz/0.15MHz~10MHz, 10MHz~30MHz, 30MHz~80MHz
Field Strength:	3 Vr.m.s./3V~1Vr.m.s./3Vr.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	at least 3 seconds

4.5.1. Test Standard and Specification

4.5.2. Test Setup

4.5.3. Test Procedure

1) The EUT was placed on an insulating support of 0.1m height above a ground reference Plane, arranged and connected to satisfy its functional requirement. All cables exiting the EUT was supported at a height of at least 30 mm above the ground reference plane.

2) The coupling and decoupling devices were required, they were located between 0.1 m and 0.3 m from the EUT. This distance was to be measured horizontally from the projection of the EUT on to the ground reference plane to the coupling and decoupling device.

3) Each AE, used with clamp injection, shall be placed on an insulating support 0.1 m above the ground reference plane. A decoupling network shall be installed on each cable between the EUT and AE except the cable under test.

Shenzhen Anbotek Compliance Laboratory Limited Page 42 of 64 Report No.: SZAWW181009009-01E

All cables connected to each AE, other than those being connected to the EUT, shall be provided with decoupling networks. The decoupling networks connected to each AE (except those on cables between the EUT and AE) shall be applied no further than 0.3 m from the AE. The cable(s) between the AE and the decoupling network (s) or in between the AE and the injection clamp shall not be bundled nor wrapped and shall be kept between 30 mm and 50 mm above the ground reference plane.

4) The frequency range was swept from 150 kHz to 230 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or to change coupling devices as necessary. Where the frequency was swept incrementally, the step size do not exceed 1% of the preceding frequency

4.5.4. Test Data

Product Safety

Job No.:	SZAWW181009	009-01E Temp.(℃)/Hum.(%RH)): 24.3°C/55%RH
Standard:	EN 61000-4-6	Power Source:	TX: DC 6V
			RX: AC 230V, 50Hz
Test Mode:	Mode 1		

LeV-	Voltage (V)	Test Frequency (MHz)	Tested Line	Injection Method.	Performance Criterion	Test Result
100	bote ^{K3} P	0.15~80	AC line	CDN-M2	CT/CR	PASS

Remark: For normal operating function: There was no change compared with the initial operation during and after the test.

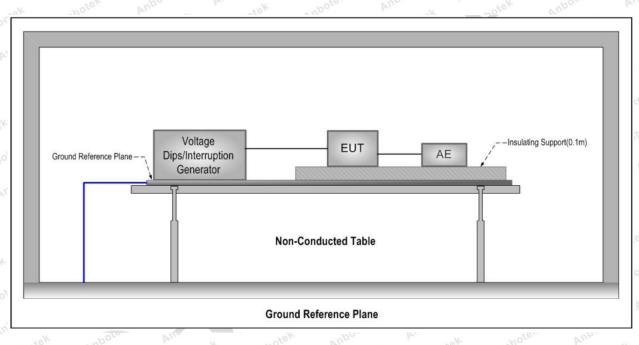
 Job No.:
 SZAWW181009009-01E
 Temp.(°C)/Hum.(%RH):
 24.3°C/55%RH

 Standard:
 EN 61000-4-6
 Power Source:
 AC 230V, 50Hz

 Test Mode:
 Mode 1
 Standard:
 Standard:

Voltage (V)	Test Frequency (MHz)	Tested Line	Injection Method.	Performance Criterion	Test Result
nootek Ant	0.15~10	AC line	CDN-M2	CT/CR	PASS
3~1	10~30	AC line	CDN-M2	CT/CR	PASS
tek 3 Anbot	30~80	AC line	CDN-M2	CT/CR	PASS

Remark: For normal operating function: There was no change compared with the initial operation during and after the test.


4.6. Voltage Dips and Interruptions

Test Standard	Draft ETSI EN 301 489-1 V2.2.0 Clause 9.7/EN 55035:2017 Clause 4.2.6
Basic Standard	EN 61000-4-11: 2004
Voltage Dips:	0% reduction, 0.5 Cycle 0% reduction, 1.0 Cycle 70% reduction, 25 Cycles
Voltage Interruptions:	0% reduction, 250 Cycles
Interval between Event:	Minimum 10 seconds
Phase Angle:	0°/180°
Test Cycle:	3 times

4.6.1. Test Standard and Specification

4.6.2. Test Setup

Product Sal

4.6.3. Test Procedure

1) The EUT was placed on a ground reference plane(GRP)insulated by an insulating support 0,1 m thick and the GRP was placed on a 0.8m high wooden table for table-top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP.

2. The test was performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer.

3. The EUT was tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10 s minimum. Each representative mode of operation was tested.

4. For EUT with more than one power cord, each power cord was tested individually.

Shenzhen Anbotek Compliance Laboratory Limited Page 44 of 64 Report No.: SZAWW181009009-01E

4.6.4. Test Data

15.1

Job No.:	SZAWW181009009-01E	Temp.(℃)/Hum.(%RH):	24.3℃/55%RH
Standard:	EN 61000-4-11	Power Source:	TX: DC 6V RX: AC 230V, 50Hz
Test Mode:	Mode 1		

Ut:230Vac 50Hz	Dura	itions	Event interval (sec)	Total events (time)	Performance Criterion	Result
Voltage residual (%)	(period)	(ms)	10	et 3 notek	TT/TR	PASS
Anboren O Anbor	1 pote	20,000	10	otek 3 Anbot	TT/TR	PASS
Anboten 0 Anbo	0.5	otek 10 Ant	10	notel 3 pril	TT/TR	PASS
70	25	500	10	3	TT/TR	PASS
Lek An	250	5000	10	3010	TT/TR	PASS
pote ^k 70 ^{botu}	0.5	10	10	ek 3 nbotek	TT or CR	PASS

Ut:100Vac 50Hz Durations		ations	Event interval (sec)	Total events (time)	Performance Criterion	Result
Voltage residual (%)	(period)	(ms)	10 Mark	3 Jet	TT/TR	PASS
potek 0 ¹⁰⁰¹ ok	hotek	20	10	x 3 botek	TT/TR	PASS
Autorea 0 Marca	0.5	10	10	otek 3 pote	TT/TR	PASS
70	25	500	10	wotek 3 hob	TT/TR	PASS
Anboten Anbo	250	5000	10	3	TT/TR	PASS
70	0.5	10	10	3	TT or CR	PASS
wet solen	np	dek.	hoto	Ren	Loter	Aupor Au

Ut:240Vac 50Hz	Durations		Event interval (sec)	Total events (time)	Performance Criterion	Result
Voltage residual (%)	(period)	(ms)	10	3	TT/TR	PASS
Anto O Anto	woteW	20	Anto 10	3 cel	TT/TR	PASS
potek p0pote p	0.5	10	10	3 botek	TT/TR	PASS
nbotek 70 nbote	25 tek	500	10,000	tek 3 nbotel	TT/TR	PASS
Anbotek 0 Anbot	250	5000	10 And	otek 3 hnbr	TT/TR	PASS
Minore 70 Minore	0.5	potek 10 p	10 ⁰¹⁰ 10	abote 3	TT or CR	PASS

Shenzhen Anbotek Compliance Laboratory Limited Page 45 of 64 Report No.: SZAWW181009009-01E

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Test

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited Page 46 of 64 Report No.: SZAWW181009009-01E

Shenzhen Anbotek Compliance Laboratory Limited Page 47 of 64 Report No.: SZAWW181009009-01E

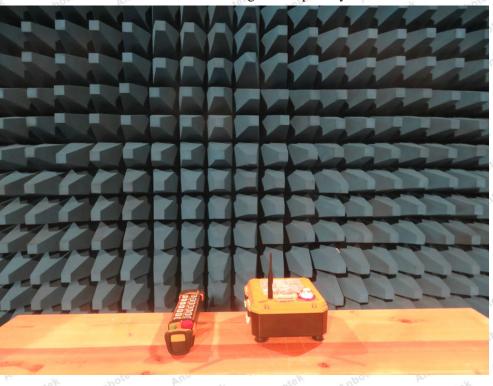


Photo of RF Field Strength Susceptibility Test

Photo of Electrical Fast Transient /Burst Immunity Test

Shenzhen Anbotek Compliance Laboratory Limited Page 48 of 64 Report No.: SZAWW181009009-01E

Shenzhen Anbotek Compliance Laboratory Limited Page 49 of 64 Report No.: SZAWW181009009-01E

Photo of Dips Immunity Test

Shenzhen Anbotek Compliance Laboratory Limited Page 50 of 64 Report No.: SZAWW181009009-01E

APPENDIX II -- EXTERNAL PHOTOGRAPH

tei 10 11 12 13 14 15 16 17 18 19 20 21 9 8

Shenzhen Anbotek Compliance Laboratory Limited Page 51 of 64 Report No.: SZAWW181009009-01E

榆溪

otek 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

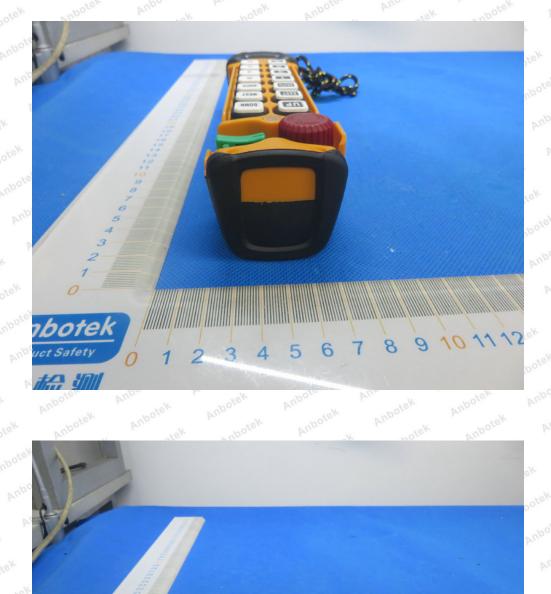
6

8 9

Shenzhen Anbotek Compliance Laboratory Limited Page 52 of 64 Report No.: SZAWW181009009-01E

Anbote

Shenzhen Anbotek Compliance Laboratory Limited Page 53 of 64 Report No.: SZAWW181009009-01E



Shenzhen Anbotek Compliance Laboratory Limited Page 54 of 64 Report No.: SZAWW181009009-01E

Shenzhen Anbotek Compliance Laboratory Limited Page 55 of 64 Report No.: SZAWW181009009-01E

Shenzhen Anbotek Compliance Laboratory Limited Tel:(86)755-26066440 Fax:(86)755-26014772 www.anbotek.com

11 12 13 14

15 16 17 18 19 20 21 22 23 24 7

5

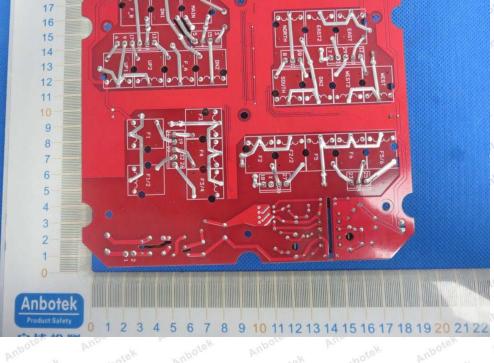
TEGO


2

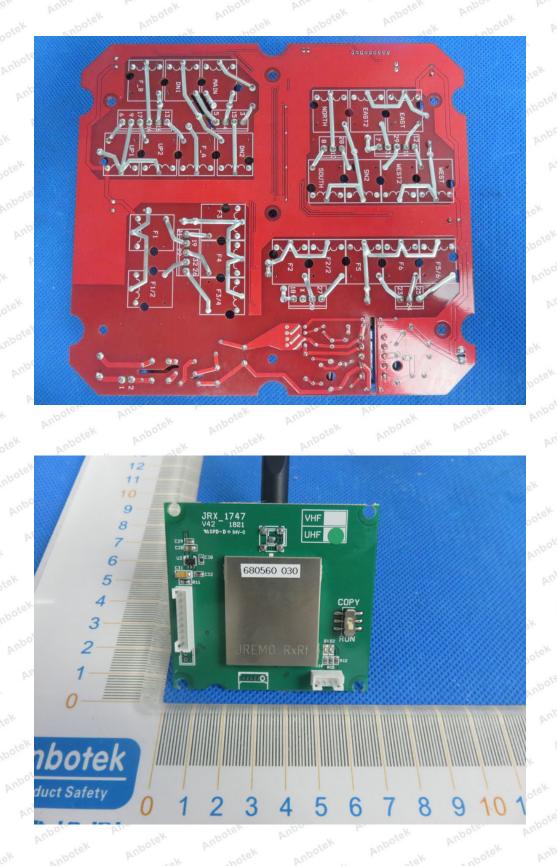
00

8

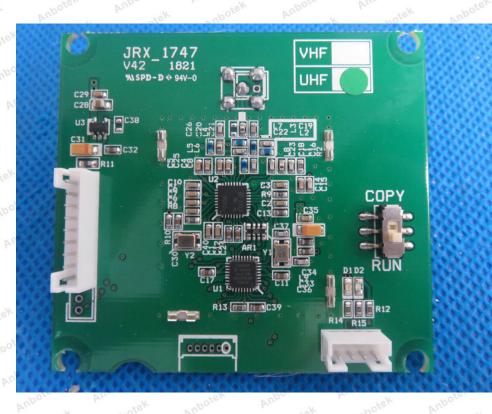
Shenzhen Anbotek Compliance Laboratory Limited Page 56 of 64 Report No.: SZAWW181009009-01E

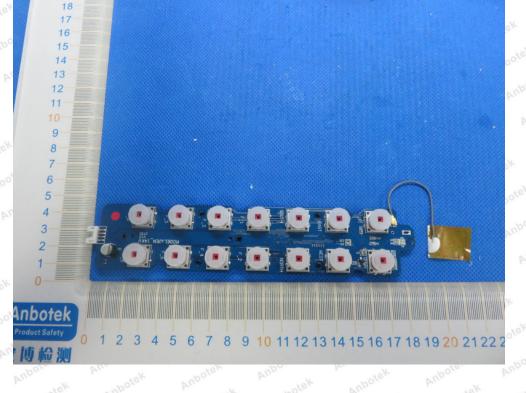

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited Page 57 of 64 Report No.: SZAWW181009009-01E

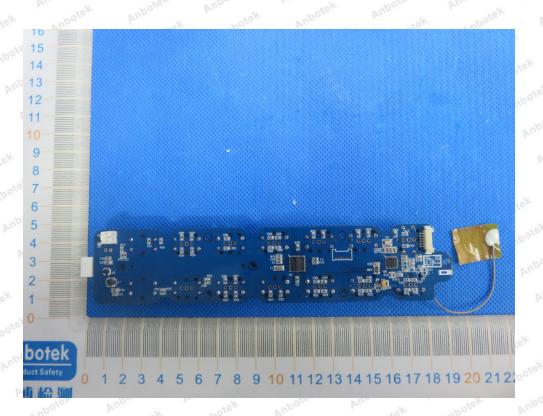


19 18 Shenzhen Anbotek Compliance Laboratory Limited Page 58 of 64 Report No.: SZAWW181009009-01E


Shenzhen Anbotek Compliance Laboratory Limited Page 59 of 64 Report No.: SZAWW181009009-01E

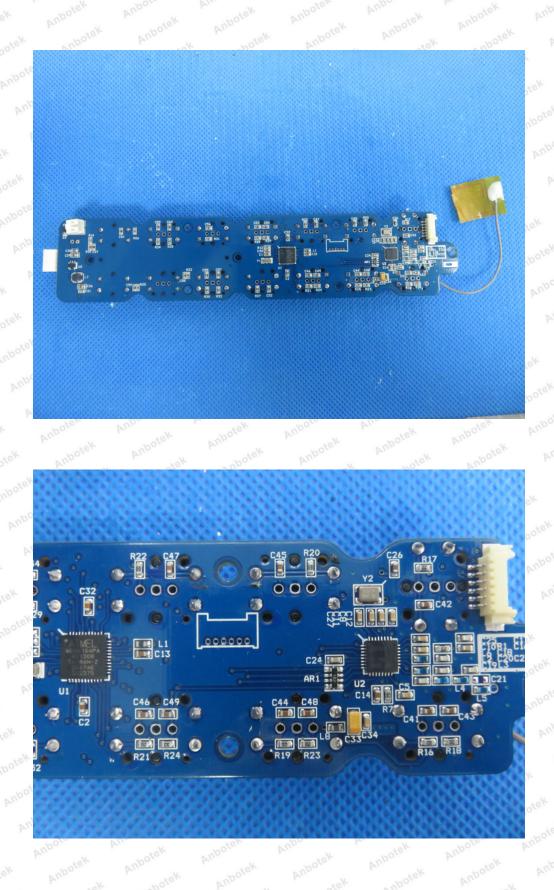


Shenzhen Anbotek Compliance Laboratory Limited Page 60 of 64 Report No.: SZAWW181009009-01E

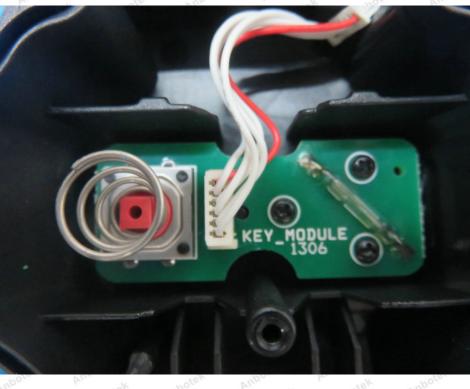


Shenzhen Anbotek Compliance Laboratory Limited Page 61 of 64 Report No.: SZAWW181009009-01E

Anbotek Anbotek



Shenzhen Anbotek Compliance Laboratory Limited Page 62 of 64 Report No.: SZAWW181009009-01E


Shenzhen Anbotek Compliance Laboratory Limited Page 63 of 64 Report No.: SZAWW181009009-01E

Shenzhen Anbotek Compliance Laboratory Limited Page 64 of 64 Report No.: SZAWW181009009-01E

---- End of Report ---